

Available online at www.sciencedirect.com

Tetrahedron Letters 47 (2006) 671-674

Tetrahedron Letters

Selective hydrolysis of *anti*-1,3-diol-acetonides for the differentiation of 1,3-*anti* and 1,3-*syn* diols

Gérald Coste and Sandrine Gerber-Lemaire*

Laboratory of Glycochemistry and Asymmetric Synthesis, Ecole Polytechnique Fédérale de Lausanne, BCH, CH-1015 Lausanne, Switzerland

> Received 24 October 2005; revised 21 November 2005; accepted 22 November 2005 Available online 7 December 2005

Abstract—A mild and general method for the selective cleavage of *anti*-1,3-acetonides has been developed for the differentiation of 1,3-*anti* and 1,3-*syn* diols in long chain polyolic fragments. The diluted acidic conditions applied to these systems are compatible with other common protecting groups such as silyl ethers and benzyloxymethyl ethers. © 2005 Elsevier Ltd. All rights reserved.

1. Introduction

A large variety of biologically active natural products includes subarrays of 1,3-diols, in particular, the family of polyene macrolide antibiotics.¹ Vogel's group has developed a non-iterative asymmetric synthesis of 15-carbon 1,3-polyols based on the stereoselective functionalization of dialkenes of type *meso*- 4^2 and *threo*-5,³ readily obtained from the bicycloadducts resulting from

the double [4+3]-cycloaddition of 2,2'-methylenedifuran to 1,1,3-trichloro-2-oxyallyl cation (Scheme 1).⁴ For the assignment of relative configurations⁵ and for synthetic purposes, 1,3-polyols are often protected as polyacetonides. Nevertheless, it remains a difficult task to achieve selective protection of one 1,3-diol subunit in a long chain polyolic fragment. Despite the fact that differences in the rate of hydrolysis of diastereoisomeric 1,3-diolacetonides have been reported,⁶ very few applications

Scheme 1. Synthesis of long chain polyols.

Keywords: Acetonide cleavage; Long chain polyols; Selective deprotection.

^{*} Corresponding author. E-mail: Sandrine.Gerber@epfl.ch

^{0040-4039/\$ -} see front matter @ 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2005.11.110

of these kinetic data have been proposed. Inspired by the work of Müller and co-workers⁷ on the diastereoisomer-differentiating hydrolysis of 1,3-diol-acetonides, we have developed mild and general conditions for the selective cleavage of *anti*-1,3-diol-acetonides in the presence of *syn*-1,3-diol-acetonides on the same molecule.

2. Results and discussion

In order to explore various conditions for the selective cleavage of *anti*-1,3-diol-acetonides, the previously reported diacetonide 6^3 was used as a model polyolic fragment (Scheme 2). We first applied the conditions reported by Müller for the selective hydrolysis of simple *anti*-diol-acetonide (Table 1, entry 1). Unfortunately, a low conversion was observed and prolonged reaction time led to the unselective deprotection of both *anti*-and *syn*-diol-acetonides. Pyridinium *p*-toluene sulfonate was then used to promote acetonide cleavage in CH₂Cl₂,

but only led to the recovery of the starting polyol **6** (entries 2–3). Addition of methanol as a co-solvent afforded a moderate 40% yield of the expected monoacetonide **7**, together with the fully deprotected tetraol **8** (60%). The same lack of selectivity was obtained in the presence of camphorsulfonic acid and *p*-toluenesulfonic acid, at 0 °C, in CH₂Cl₂ (entries 5 and 7). Acidic alumina was uneffective to promote acetonide cleavage (entry 6). Finally, we found out that the use of 5 mol% of *p*-toluenesulfonic acid at -20 °C in CH₂Cl₂, afforded monoacetonide **7** in 80% yield, without concomitant undesired cleavage of the *syn*-1,3-diol acetonide (entry 8).

In order to validate the applicability of these conditions, another diacetonide derivative was prepared (Scheme 3). Ozonolysis of dialkene *meso-9* followed by reductive treatment with Me₂S and then with an excess of Me₄NBH(OAc)₃⁸ afforded a mixture of hemiacetals 10, that were not purified but subsequently reduced to the

Scheme 2. Selective hydrolysis of anti-1,3-diol-acetonides.

Table 1.	Ta	ble	1.
----------	----	-----	----

Entry	Conditions	7 ^a (% yield)	8 ^a (% yield)	6 ^a (% yield)
1	2 M HCl 0.05 equiv, CH ₂ Cl ₂ (0.15 M), 25 °C			21
2	PPTS 0.2 equiv, CH ₂ Cl ₂ (0.05 M), 0 °C			100
3	PPTS 0.6 equiv, CH ₂ Cl ₂ (0.05 M), 25 °C			100
4	PPTS 0.6 equiv, CH ₂ Cl ₂ /MeOH (3:1, 0.05 M), 0 °C	40	60	_
5	CSA 0.7 equiv, CH ₂ Cl ₂ (0.1 M), 0 °C	37	53	_
6	Acidic alumina, CH ₂ Cl ₂ (0.1 M), 25 °C			100
7	<i>p</i> -TsOH 0.2 equiv, CH ₂ Cl ₂ (0.05 M), 0 °C	46	29	_
8	<i>p</i> -TsOH 0.05 equiv, CH ₂ Cl ₂ (0.05 M), -20 °C	80	—	_

^a Isolated yield.

Scheme 3. Reagents and conditions: (1) O₃, CH₂Cl₂, $-78 \,^{\circ}$ C; (2) Me₂S, $-78 \,^{\circ}$ C; (3) Me₄NBH(OAc)₃, 0 $^{\circ}$ C, MeCN/AcOH; (4) NaBH₄, 25 $^{\circ}$ C; (5) Me₂C(OMe)₂/acetone, *p*-TsOH cat., 0 $^{\circ}$ C, then PPTS, CH₂Cl₂; (6) *p*-TsOH 5%, CH₂Cl₂, $-20 \,^{\circ}$ C.

corresponding polyol 11 in 58% yield. Treatment with $Me_2C(OMe)_2$ and acetone, in the presence of a catalytic amount of *p*-TsOH, afforded diacetonide 12. The conditions described above were successfully applied to this derivative, resulting in the selective cleavage of the *anti*-1,3-diol-acetonide to provide monoacetonide 13 in 70% yield. In synthetic studies, silyl groups are among the most widely used protecting moieties for alcohols. For that purpose we also tested the compatibility of our conditions with *tert*-butyldimethylsilyl groups as exemplified by the selective deprotection of the 1,3-*anti* diol moiety from the silylated polyol 14, in the presence of 5 mol% of *p*-toluenesulfonic acid, which provided monoacetonide 15 in 68% yield. No trace of deprotection of the primary alcohols was observed.

3. Conclusion

The differentiation of alcohol moieties from polyolic fragments is often required for the selective functionalization of synthetic intermediates. In this context, the mild conditions reported here represent a new alternative for the selective deprotection of *anti*-1,3-diols from polyacetonide derivatives.

3.1. General procedure for the selective hydrolysis

The polyacetonide derivative was dissolved in dichloromethane (concentration: 0.05 M) and the solution was cooled to -20 °C. *p*-Toluene sulfonic acid (0.05 equiv) was added and the mixture was stirred at -20 °C for 3 h (monitoring by TLC). The reaction mixture was directly purified by flash chromatography (4% MeOH/ CH₂Cl₂) to afford the monodeprotected derivative as a colorless oil. Otherwise, the reaction mixture could also be worked-up by pouring into a satd aq solution of NaHCO₃. The aqueous layer was extracted with CH₂Cl₂ (three times). The combined organic extracts were dried (MgSO₄) and concentrated in vacuo. The residue was purified as mentioned above.

Data for 7. $[\alpha]_{405}^{23}$ -223, $[\alpha]_{435}^{23}$ -120, $[\alpha]_{577}^{23}$ -22, $[\alpha]_{589}^{23}$ -10 (*c* 0.4, MeOH). IR (film): 3415, 2940, 1650, 1430, 1380, 1265, 1200, 1160, 1100, 1035, 740, 700 cm⁻¹. ¹H NMR (400 MHz, MeOD): $\delta = 7.38-7.24$ (m, 10H), 4.82 (s, 4H), 4.64-4.60 (m, 4H), 4.13-4.09 (m, 2H), 4.08-3.96 (m, 4H), 3.67 (t, 4H, ³J = 6.7), 1.82-1.77 (m, 4H), 1.69-1.65, 1.63-1.42 (2m, 10H), 1.42, 1.29 (2s, 6H) ppm. ¹³C NMR (100 MHz, MeOD): $\delta = 138.8$, 128.4, 127.9, 127.7, 98.9, 94.5, 94.4, 73.5, 73.4, 69.8, 67.5, 66.2, 65.3, 64.4, 58.5, 44.8, 44.4, 43.7, 43.1, 38.4, 38.3, 37.6, 29.6, 19.2 ppm. MALDI-MS: 643.46 (M+Na), 659.45 (M+K). C₃₄H₅₂O₁₀ (620.775): calcd C 65.78, H 8.44; found C 65.75, H 8.49.

Data for **12**. IR (film): 3445, 3065, 3030, 2990, 2940, 1495, 1455, 1380, 1225, 1165, 1025, 940, 810, 740, 700 cm⁻¹. ¹H NMR (C₆D₆, 400 MHz, 25 °C): $\delta = 7.33-7.06$ (m, 10H), 4.77–4.70 (m, 4H), 4.62, 4.50 (2d, 2H, ²J = 12.0), 4.61, 4.47 (2d, 2H, ²J = 12.0), 4.21–3.86 (m, 6H), 3.74, 3.64 (2m, 4H), 2.05–1.98 (m, 4H), 1.78–1.31 (m, 10H), 1.40, 1.38, 1.33, 1.27 (4s, 12H) ppm. ¹³C NMR (C₆D₆, 100.6 MHz, 25 °C): $\delta = 139.1$, 129.3, 129.2, 128.5, 101.1, 99.3, 95.6, 95.5, 75.3, 74.3, 70.4, 66.6, 65.9, 64.5, 63.0, 60.0, 43.7, 43.4, 43.1, 40.1, 39.3, 39.2, 31.2, 25.8, 25.7, 20.6 ppm. CI-MS (NH₃): 678 (1, [M+NH₄⁺]), 645 (2), 91 (100). C₃₇H₅₆O₁₀ (660.839): calcd C 67.25, H 8.54; found C 67.25, H 8.79.

Data for **13**. IR (film): 3415, 2945, 1650, 1430, 1285, 1200, 1160, 1100, 1035, 740, 700 cm⁻¹. ¹H NMR (400 MHz, MeOD): $\delta = 7.38-7.15$ (m, 10H), 4.83–4.78 (s, 4H), 4.67–4.60 (m, 4H), 4.12–3.95 (m, 6H), 3.70–3.65 (m, 4H), 1.82–1.75 (m, 4H), 1.62–1.29 (2m, 10H), 1.39, 1.30 (2s, 6H) ppm. ¹³C NMR (100 MHz, MeOD): $\delta = 138.3$, 128.4, 128, 127.7, 99.0, 94.6, 94.5, 73.4, 72.8, 69.8, 69.7, 66.3, 66.0, 65.1, 64.6, 58.5, 58.4, 45.8, 44.7, 43.7, 42.9, 38.5, 38.3, 38.1, 29.6, 19.3 ppm. MALDI-MS: 643.31 (M+Na), 659.28 (M+K). C₃₄H₅₂O₁₀ (620.775): calcd C 65.78, H 8.44; found C 65.72, H 8.35.

Data for **15**. IR (film): 3520, 2940, 2860, 1733, 1465, 1380, 1255, 1200, 1165, 1105, 1040, 840, 780, 740, 700, 660 cm⁻¹. ¹H NMR (400 MHz, MeOD): $\delta = 7.50-7.24$ (m, 10H), 4.83 (s, 4H), 4.26, 4.63 (2s, 4H), 4.20-3.85 (2m, 6H), 3.74 (t, 4H, ³J = 5.7), 1.78-1.40 (m, 4H), 1.78-1.40 (2m, 10H), 1.42, 1.28 (2s, 6H), 0.92 (s, 18H), 0.13 (s, 12H) ppm. ¹³C NMR (100 MHz, MeOD): $\delta = 138.3$, 128.4, 127.9, 127.7, 98.9, 94.6, 94.5, 73.5, 69.8, 67.5, 66.2, 65.3, 64.4, 59.7, 44.7, 44.4, 43.8, 43.3, 38.8, 37.6, 29.6, 19.3, 25.4, 24.1, -6.2 ppm. MALDI-MS: 871.61 (M+Na), 887.58 (M+K). C₄₆H₈₀O₁₀Si₂ (849.292): calcd C 65.05, H 9.49, Si 6.61; found C 65.75, H 9.55, Si 6.54.

Acknowledgements

This work was supported by the Swiss National Foundation (Grant No. 200020-100028/1). We thank Mr. Martial Rey and Mrs Annabelle Gillig for technical help.

References and notes

- For leading reviews, see e.g.: (a) Aparicio, J. F.; Mendes, M. V.; Anton, N.; Recio, E.; Martin, J. F. Curr. Med. Chem. 2004, 11, 1645–1656; (b) Zotchev, S. B. Curr. Med. Chem. 2003, 10, 211–223; (c) Rychnovsky, S. D. Chem. Rev. 1995, 95, 2021–2040; (d) Kerridge, D. Drugs Today 1988, 24, 705–715; (e) Crandall, L. W.; Hamill, R. L. Bacteria 1986, 9, 355–401; (f) Omura, S.; Tanaka, H. Macrolide Antibiotics: Chemistry, Biology and Practise; Academic Press: New-York, 1984.
- (a) Schwenter, M. E.; Vogel, P. Chem. Eur. J. 2000, 6, 4091–4103; (b) Schwenter, M. E.; Vogel, P. J. Org. Chem. 2001, 66, 7869–7872; (c) Meilert, K.; Pettit, G. R.; Vogel, P. Helv. Chim. Acta 2004, 87, 1493–1507; (d) Coste, G.; Gerber-Lemaire, S. Tetrahedron: Asymmetry 2005, 16, 2277–2283; (e) Vogel, P.; Gerber-Lemaire, S.; Carmona Asenjo, A. T.; Meilert, K.; Schwenter, M. E. Pure Appl. Chem. 2005, 131–137.
- (a) Csákÿ, A. G.; Vogel, P. *Tetrahedron: Asymmetry* 2000, 11, 4935–4944; (b) Gerber-Lemaire, S.; Vogel, P. *Eur. J.* Org. Chem. 2003, 2959–2963.

- Meilert, K. M.; Schwenter, M. E.; Shatz, Y.; Dubbaka, S. R.; Vogel, P. J. Org. Chem. 2003, 68, 2964.
- 5. Rychnovsky, S. D.; Rogers, B. N.; Richardson, T. I. Acc. Chem. Res. 1998, 31, 9–17.
- 6. (a) Pihlaja, K. Ann. Univ. Turkuensis Ser. A1 1967, 114; (b) Pihlaja, K. Acta Chim. Scand. 1968, 22, 716–718; (c)

Paterson, I.; Scott, J. P. J. Chem. Soc., Perkin Trans. 1 1999, 1003–1014.

- 7. Bode, S. E.; Müller, M.; Wolberg, M. Org. Lett. 2002, 4, 619–621.
- 8. Evans, D. A.; Chapman, K. T.; Carreira, E. M. J. Am. Chem. Soc. 1988, 110, 3560–3578.